常用仪器仪表的使用实验报告误差分析 常用仪器仪表的使用实验报告误差分析怎么写
一、求,示波器使用——实验报告的误差分析?
示波器使用——实验报告的误差分析主要有以下几个方面
1、两台信号发生器不协调。
2、桌面振动造成的影响。
3、示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准。
4、取正弦周期时肉眼调节两荧光线间宽度不准,导致周期不准。
5、机器系统存在系统误差。
6、fy选取时上下跳动,可能取值不准。
扩展资料:
示波器的作用:
1、用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。
2、除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测
二、旋光度的测定实验报告误差分析?
一、影响旋光仪测量误差的几种因素
(1)温度因素
旋光仪长时间工作后,温度升高。温度变化会使待测物质分子间发生缔合或离解,使旋光度发生改变。为了避免这些因素,实验时必须保持恒温,旋光管装上恒温夹套。建议测量间隔时间超过半小时以上时,关闭电源以减少仪器自身发热量。
(2)旋光管长度因素
旋光管长度误差对测量结果有较大影响,应符合0.01~0.2%标称尺寸准确度要求。旋光管通常有10cm、20cm、22cm三种规格。测量旋光能力较弱或者较稀的溶液,为降低误差建议使用20cm、22cm的旋光管。
(3)溶剂误差因素
物质的旋光度取决于其本身的结构,还与光线透过物质的厚度、光的波长和温度有关。当测量样品为溶液时,溶液的浓度也有一定影响。
(4)旋光仪性能因素
旋光仪长时间工作后,光、机、电各部分工作状态的变化也会引起旋光仪性能的变化。比如电压不稳定,会造成钠光灯发暗。长时间使用的仪器,钠光灯老化、滤光片脏污、电子元器件灵敏度下降,机械部分松动或位移等都会造成读数误差。所以日常要注意仪器的保养和定期检测。
(5)人为因素
操作人员的不规范行为,会造成比较大的误差。比如不等旋光仪完全平衡后就读数,在起辉状态下测量,或者不按检测方法规定测量五次求取平均值等等。
三、燃烧焓的测定实验报告误差分析?
(a) 温度测定过程中产生的误差:在进行温度测定的过程中,由于搅拌器的搅拌不可能使得体系中各部分的温度达到绝对均匀。所以,通过温度测量仪测得的是测温探头附近液体的温度,此温度与饱和蒸气的温度不一定完全一致,从而使所测数据和最终计算结果与实际值间存在误差。 (b) 实验中环境条件改变产生的误差:在测量过程中,虽然采用恒温槽使得体系的温度处于恒定状态,但仍然不能完全保证测定条件没有发生变化。同时,由于实验中测定仪器直接与外界环境接触,所以当外界环境温度、大气压力和湿度改变时,测量仪器所处状态的不同可能影响其测得数据的准确性。 特别是考虑到实验中使用了较多的数字式电子测定仪器,当温度和湿度改变时,电子元件的物理化学特性(如电阻、电容、化学势等)很可能发生改变,从而导致所测得数据的误差。 (c) 测量体系的改变:在实验中认为测量体系的组成没有变化,始终为无水乙醇。但是在实际情况下,体系组成改变的可能也是存在的。具体而言,如果排气或升温过程中液体沸腾过于剧烈,可能使蒸发出的液体将仪器磨口密封用的甘油溶解,之后混有甘油的蒸汽返回体系时就可能改变体系组成,从而使体系饱和蒸气压发生变化,引入误差。为避免这一现象,升温时需随时调节活塞H,防止液体剧烈沸腾。 (d) 测量仪器的系统误差:由于测温仪器本身不可能绝对精确,实验测量过程中也可能存在由此导致的系统误差,影响结果的准确性。
四、偏振光的检测误差分析实验报告?
误差分析: 产生规差的主要原因有以下几个方面:GX轴旋转二结架上刻皮该数不准确:
②一人波片位不一定在45度角 上;
③光功率接收仪自身因素使用时间长后读数不稳定和不准确;
④电源不稳定使得光功率接收仪读数不稳定和 不准确。 实验中现象的分析和处理 N_N,正交不能完全消光,实验中当看到光最弱时为正交位置。 其他可研究
五、轴向拉伸实验报告误差原因及分析?
轴向拉伸实验的误差因素
1、取样部位的影响
从金属材料的不同位置取样获得的实验样本,其力学性能往往存在一些差异,例如圆钢40mm其中心处的抗拉强度低于1/4处的抗拉强度,且断后拉伸率也存在差别,可见取样部位对实验结果有着不可忽视的影响。由于金属材料在铸造形成、加工过程中,成分、内部组织结构、冶金缺陷、加工变形分布不均,因此使得同一批,甚至同一产品的不同部位的力学性能出现了差异。
2、取样方向的影响
取样方向的差异会直接影响金属材料拉伸试验的断后伸长率、屈服强度以及抗拉强度等各项性能指标,尤其是断后伸长率受到的影响更大。若采取横向取样,则依照有关标准,试验之后的断后伸长率则不能够达标。通常垂直于轧制方向,则金属力学性能则可能不达标;平行于轧制方向,则金属力学性能良好。
3、试样的形状、尺寸的影响
同一材料同一状态的金属材料,如果截面形状不同,测得的结果对屈服强度中的上屈服强度ReH影响大,对下屈服强度ReH影响小。矩形试样的工作长度部分的对称度,圆形试件的工作部分轴线与夹头部分的轴线不同心,都会在拉伸时产生偏心力,产生附加弯曲应力,使强度和伸长率均降低。试样的尺寸的大小对试验结果的影响是,同一材料同一状态的金属材料试样,大横截面积(大尺寸)的试样的抗拉强度较小尺寸的低,而且塑性指标也下降。
六、刚性转子动平衡实验报告误差分析?
动平衡不平衡量克/mm值越小,平衡精度越高
七、高锰酸钾的配制与标定实验报告误差分析?
其实也都是滴定中的误差,比如实验中,仰视俯视等,主要是抓住各个量的增大还是减小,就知道偏高还是偏低。
八、常用仪器仪表使用教材适合什么专业?
一般是自动化仪表或测控技术及仪器仪表等专业 。
我是测控专业的,专业课主要有电路原理,数字电子、模拟电子,自动控制原理、过程控制仪表、检测仪表、PLC原理、单片机原理、汇编语言、高级语言(C+或basic等),电机与拖动、工厂供电、数字信号处理等。
要说明的是电气自动化和自动化仪表不是一个专业的,一个侧重电气、一个侧重仪表
九、托盘天平使用中的误差分析?
天平测量的误差分析
天平和其他仪器一样,存在着误差问题,现在我们对托盘天平常出现的几种误差做一分析总结.
1.托盘天平准确值或准确度的分析
准确值或准确度是指天平能准确称量物体的最小值.托盘天平的准确值为0.1g,是指托盘天平称量物体时,其值整数位和小数点后面第一位是准确的,而小数点后面第二位是不准确的.
2.物体和砝码放反后的误差分析
正确称量时,左边放物体,右边放砝码,则M物=M砝+ M游,即物体的正确质量.当物体和砝码放反时,则有两种情况:其一是未使用游码,其二是使用了游码.
(1)未使用游码的情况根据M物=M砝
+M游,未使用游码时,M游=0,物体和砝码放正确时M物=M砝,而放反后则M砝=M物,因此称量值是准确的.
(2)使用游码时的情况放反后,右边是物体,左边是砝码,如果仍按正确读法读数,则M′物=M砝 +M游①,是不准确的,因为此时的平衡关系应为M砝=M物+M游变形得M物=M砝-M游②,称量值M′物与实际值M物的关系是①-②得M物=M′物-2M游,放反后称量值偏大.
3.称量前游码回零,但未调平的误差分析
游码回零未调平时有指针偏左、偏右两种情况.
(1)指针偏右指针偏右说明右盘相对于左盘重一些,称量值偏小.
(2) 指针偏左指针偏左说明左盘相对右盘重,称量值偏大.
4.游码未回零的误差分析
游码未回零但调平的误差分析.游码未回零但调平时,设称量前游码的示数为a克,称量后游码的示数为b克,其等式关系应为M物+a=M砝+b①,M砝+b为称量值,称量值偏大.变形①式为M物=M砝+(b-a),即在称量时称量物体质量的游码质量不是b克,而是(b-a)克.
5.称量前游码未回零,也未调平的误差分析
(1)游码未回零指针偏左
指针偏左表明左边质量比右边质量大,右盘的称量值大于实际值.
(2)游码未回零指针偏右
指针偏右,表明右边质量比左边质量大,设左盘质量为x克,右盘质量为y克,此时游码质量为a克,则有xM砝
+b(称量值),即称量值小于实际值;③x>y,即左盘质量大于右盘质量.游码若回零,指针指向左盘。
十、量气管的使用原理及误差分析?
化学量气管的使用规则如下:
量气管量气之后保持水准管要和量气管液面相平是因为相平说明两边液面上的压强是一样的,这样测出来的气体体积才是当时大气压下的体积,如果有一边高的话,比如量气管的液面高说明所测量的气体的压强小,根据PV=nRT,体积大于于实际体积,水准管的液面高则气体体积小,因为除了大气压气体还受到高出那一部分液体的压强,所以体积还是偏小。
气体体积的读数就是量气管量气前的读数减去量气后的读数,液面以凹液面为准。
化学量气管的原理如下:
量气管用的是等压面的概念,就是连通液体的压强在相同水平位置处是相等的。
在量取时保证水准瓶中液体的液面和量气管中液体的液面在同一压力下,即保证气体取样时压力保证在一个标准大气压力下。
本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.