当前位置:首页 > 污水处理 > 正文内容

污水处理中的微生物主要有好氧(污水处理中的微生物主要有好氧还是厌氧)

2023-04-08 01:07:58污水处理1

一、污水处理中什么是厌氧,好氧?

污水处理中厌氧好氧是针对活性污泥法污水处理技术说的,在活性污泥污水处理法中,是应用微生物对有机物质的分解进行污水处理的一项技术,技术原理非常简单,就是在含有有机物的污水中投放菌株,利用细菌、微生物摄取水中的有机物质,经过代谢排出的过程,将有机物分解为水、二氧化碳和无机盐的过程。但是在实际操作中就复杂多了。 一般在使用活性污泥法进行污水处理时,都要经过菌种驯化,因为不同的污水水源含有各种各样的非有机物质,有害化学元素等等,要经过逐级驯化的方法让菌种渐渐适应污水环境并进一步工作。 不同的污水水源选择的微生物物种不同,大致分为厌氧、好氧和兼性三种。顾名思义,厌氧就是不喜欢氧气,微生物的工作环境不能有氧气,相反,好氧菌的工作环境则必须含有氧气,兼性菌则对氧的要求不高,有氧可以活动,没有氧也能工作。因为各种微生物的适应性和分解不同化学物质的能力不同,在进行污水处理时往往根据水质选择菌种。 而在实际操作中,往往是设置好氧、厌氧和兼性多个处理单元,一般是好氧菌先将氧气消耗殆尽,接下来就是厌氧菌进行工作了,经过多个菌株逐级处理,有机物被全面分解,最终获得更容易处理的污水泥浆,在经过进一步杀菌和物理过滤即可按照标准排放了。参考资料:

http://www.nmgjlscl.com/Item/Show.asp?m=1&d=2925

二、污水处理中的厌氧好氧是什么意思?

污水处理中的厌氧和好氧的意思是:厌氧就是不喜欢氧气,微生物的工作环境不能有氧气,相反,好氧菌的工作环境则必须含有氧气。在污水处理过程中,废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵,是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4和CO2的过程。

一般认为,在厌氧生物处理过程中约有70%的CH4产自乙酸的分解,其余的则产自H2和CO2。在实际生产应用中,由于两种方法都有一定的缺点和优势,一般是将两种方法组合在一起的方法来进行生产和应用。

目前,最先进的处理模式是,通过改变微生物的种群,人工添加一些产生絮凝作用的微生物菌群,不管是在厌氧阶段还是在好氧阶段,通过适时添加相应的微生物絮凝剂(如红平红球菌等),不仅加快了各个过程的反应时间,最重要的是减少了沉降时间,同时减少了絮凝剂法国爱森聚丙烯酰胺的用量,降低了药剂成本;还有一个趋势是,在污水处理的最后阶段,添加一些高分子的生物絮凝剂,比如聚谷氨酸,聚胱氨酸等可以生物降解的絮凝剂,避免了污泥的二次污染,同时节省了污泥处理成本。

三、污水处理中好氧池曝气的目的?

增加好氧池水中的氧气溶解量,增强好氧菌群活力,以利于分解污水中污染物。

四、污水处理中好氧sv30正常范围?

城市污水厂SV30值一般在15%~30%,工业废水处理SV30值相对较高。测定SV30的器皿一般是1000mL的玻璃量筒。

SV30是指曝气池混合液在量筒静止,沉降30min后污泥所占的体积百分比。它是分析污泥沉降性能的最简便方法。SV30值越小,污泥沉降性能就越好。SV30值越大,沉降性能越差。在无其他异常的情况下,SV30可作为剩余污泥排放的参考依据。

五、厌氧好氧污水处理工艺讲解?

在好氧生化处理过程中,好氧微生物必须在大量氧的存在下生长繁殖,并降低废水中的有机物质;在厌氧生化处理过程中,厌氧微生物繁殖生长及其对有机物质降解处理的过程中不需要任何氧,而且厌氧微生物可适应更高COD浓度的废水,且停留时间较长。

六、污水处理中好氧池的气水比是多少?

气水比,通常是经验值,具体应该看污染物的浓度以及处理的负荷。

一般对于难度降解的废水,一般取低负荷,气水比可以高达40:1~60:1,这样的情况下,如果是活性污泥法,那么污泥负荷接近0.05~0.1gBOD/gMLSS`d,如果是膜法,那么体积负荷可能在0.3kgBOD/m3`d。

这种情况下,污泥浓度高,剩余污泥少,但是池体积大。

一般对于好处理的废水,一般取高负荷,如生活污水,气水可以取8:1~20:1,这样的情况下,如果是活性污泥法,那么污泥负荷接近0.4~2gBOD/gMLSS`d, 如果是膜法,那么体积负荷可能在1~4kgBOD/m3`d。

这种情况下,污泥总量小,剩余污泥多,但是池体体积小。

具体情况,还要看出水要求。气水比只是经验值,通常设计过程不要以此作为依据,只做参考。

七、厌氧好氧mbr污水处理工艺类型?

厌氧好氧mbr污水处理工艺属于生物处理类型

八、微生物的生长曲线在污水处理中应用?

通过微生物生长曲线可以实时的了解到污水处理的程度。微生物生长曲线按微生物生长速度的情况来划分,可分为四个时期,1.停滞期(调整期)这是微生物培养的最初阶段。在这个时期,微生物刚接入,细胞内各种酶系要有一个适应过程。此阶段在污水处理中的实际意义不太大,只是对于刚刚运行的污水处理厂或是停顿检修之后的再运行有意义。2.对数期(生长旺盛期)细胞经过一定时期调整适应后,就可以最快的速度进行增殖,细胞的生长亦就进入了生长旺盛期。在此时期,细菌数以几何级数增加。在该期间内,细菌的生长速度最大。微生物周围的营养物质较丰富,生物体的生长,繁殖不受底物限制。在这期间内,死菌数相对来说是较小的,一般在工程实际中,可略去不计。此时的微生物生长虽然旺盛,但不易沉降,在二沉池中仍以悬浮状态存在,如果以这种状态的出水排放的话,难以达到排放标准。3.静止期(平衡期)细胞经过对数期大量繁殖后,污水中的营养物质逐渐被消耗,减少,细胞繁殖速度逐渐减慢,故有时亦称为减速生长期。在此期间,细胞繁殖速度几乎和细胞死亡速度相等,活菌数趋近稳定。这个现象的出现,,主要是由于环境中的养料减少,代谢产物积累过多所致。如果再次期间,继续再增加营养物质,并排除代谢产物,那么,菌体细胞又可恢复过去对数期的生长速度。当然我们并不希望将微生物的生长状态定位在对数期,考虑到出水清澈的要求,我们更希望污泥具有良好的沉降性能,处于此时期的污泥即具有这种良好性能,因此,在污水处理中常将微生物固定在本时期。4.衰老期(衰亡期)在静止期后,由于污水中的营养物质近乎耗尽,细菌将得不到营养而只能利用菌体内的储存物质或以死菌体作为养料,进行着内源呼吸,维持生命,故亦称为内源呼吸期。在这期间,活细胞数急剧下降,只有少数细胞能继续分裂,大多数细胞出现自溶现象并死亡。菌体细胞的死亡速度超过分裂速度,生长曲线显著下降。在细菌形态方面,此时是退化型较多,有些细菌在这个时期也往往产生芽孢。处于此时期的污泥没有什么活性,对有机物的去除基本没什么贡献,因此常在污泥浓缩过程中使用。

希望对你有所帮助。

九、工业污水处理中污泥厌氧消化池产气量下降的原因主要有哪些?

(1)有机物投配负荷太低:在其他条件正常时,沼气产量与投入的有机物成正比,投入的有机物越多,沼气产量越多。反之,投入的有机物越少,则沼气产量越少。出现产气量下降的原因,往往是由于浓缩池运行不佳,浓缩效果较差,大量有机固体随浓缩池上清液流失,导致进入消化池的污泥浓度降低,即相同体积进泥的情况下有机物数量减少。此时可通过加强对污泥浓缩工艺的控制,保证达到合格的浓缩效果。  (2)甲烷菌活性降低:由于某种原因导致甲烷菌活性降低,分解VFA速率降低,因而沼气产量也随之降低。水力负荷过大、有机物投配负荷过大、温度波动过大、搅拌效果不均匀、进水存在毒物等因素均可使甲烷菌活性降低,要分析具体原因,采取相应的对策。  (3)排泥量过大:使消化池内厌氧微生物的数量减少,破坏了微生物量与营养量的平衡,使产气量随之降低,对策自然是减少排泥量。  (4)消化池有效容积减少:由于池内液面浮渣的积累和池底泥沙的堆积使消化池有效容积减小,整体消化效果下降,产气量也随之降低。此时应排空消化池进行清理,同时检查浮渣消除设施的运行情况和预处理设施沉砂池的除砂效率,对存在的故障及时消除。 (5)沼气泄漏:消化池和输气系统的管道或设施出现漏气现象使计量到的产气量比实际产气量小,此时应立即查找漏点并予以修补,以防止出现沼气爆炸等更大的事故。  (6)消化池内温度下降:进泥量过大或加热设施出现故障使消化池内温度下降,产气量也随之降低。此时对策是把消化池内的污泥加热到规定的温度,同时减少进泥量和排泥量。武汉格林环保在污水处理方面有着不错的工艺和经验,可以多了解一下。

十、微生物中的氧对厌氧菌毒害的机机制?

1.微生物依据对氧的喜好程度可分为三类:好氧、兼性厌氧、厌氧。

好氧菌一般有超氧化物歧化酶、过氧化氢酶;

厌氧菌一般则无这些酶系,所以存在氧气时会受到超氧根负离子、过氧化氢的毒害;

兼性厌氧菌含有氧、无氧/发酵两套酶系,可以在有氧与无氧条件下生存,但是在厌氧条件下生存的更好,故此命名。

2.HUMGATE滚管技术 亨盖特厌氧滚管技术,亨盖特厌氧滚管技术是美国微生物学家亨盖特于1950年首次提出并应用于瘤胃厌氧微生物研究的一种厌氧培养技术 因此他是世界上第一个分离纯化厌氧菌的人。

以后这项技术又经历了几十年的不断改进,从而使亨盖特厌氧技术日趋完善,并逐渐发展成为研究厌氧微生物的一套完整技术,而且多年来的实践已经证明它是研究严格、专性厌氧菌的一种极为有效的技术。该技术的优点是:预还原培养基制好后,可随时取用进行试验;任何时间观察或检查试管内的菌种都不会干扰厌氧条件。

本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.

本文链接:http://www.shgreenbox.com/wscl/98755194.html

标签: {$tag}