中国成功发射首颗碳卫星有什么重大意义
二氧化碳排放几何,中国卫星将开出全球账单
在这个雾霾锁城的冬季,我们对原本难以感知的气候变化,有了切肤体会:全球变暖、温室效应、极端天气等等,这些不时敲打人类文明的“大词”,如今,竟离我们每个生命个体如此之近。
别再肆无忌惮地排放了――面对这般严峻形势,人类发出疾呼。全球上百个国家的元首签下名字,承诺所属国减少二氧化碳等温室气体排放。不过,减排的一个技术前提,是排放的量化监测,而这,是个科技难题。今天凌晨,我国在酒泉成功发射的第一颗碳卫星,就是中国派往地球之上监测全球温室气体排放的太空使者。
这是继日本GOSAT卫星、美国OCO 卫星之后,全球第三颗“嗅碳”卫星。那么,这颗并非全球唯一、在排名上也并不领先的卫星,对重点地区乃至全球的大气二氧化碳浓度监测能力究竟有多大,对我国在国际气候变化方面的话语权又将有多大的提升?中国青年报・中青在线记者采访相关专家进行解读。
为何要到外太空去跟踪二氧化碳
说起二氧化碳,这个曾频繁出现在中学课本里的气体名词,人们并不陌生。这是空气中常见的温室气体。
根据碳卫星首席应用科学家、中国气象局国家卫星气象中心总工程师卢乃锰的说法,二氧化碳就像是给地球套了一层薄膜,能将太阳送到地球的热量吸收并缓慢释放,让薄膜内变得暖烘烘的,即产生所谓的“温室效应”。
当薄膜增厚,热量就不易扩散出去,在过去的几百亿年中,这样的环境让地球温度适宜升高,并孕育生命。
然而,自工业革命以来,人类向大气中排入的温室气体逐年增加,温室效应随之增强,诸如森林砍伐、矿物燃烧等正迅速打破原有的温度平衡,放大了大气的保温效应。这也成了过去的100年中,全球平均气温上升了0.7℃左右的主要原因。
0.7℃,这个和我们日常温度相比毫不起眼的数字,一旦放到另一个坐标系里去,就显得异常严峻。科学论证表明,如果全球平均气温的升温超过2℃,地球上的生命将岌岌可危。事关全球气候治理的《巴黎协定》,也将升温的目标控制在远低于2℃的范围内。
那么,如何控制?
减排。
如何确认减排?
有效的监测。
这个逻辑推演并不难,难是“有效的”三个字。
事实上,早在150年前,人类就开始对二氧化碳进行地面观测。直到2010年前后,全球范围内的地面观测站依然有200多个,但根据专家的说法,依靠它们无法画出一张全球二氧化碳分布图。
卢乃锰甚至发现,有的国家只是通过化石燃料燃烧数量、效率,来计算二氧化碳排放量,这其中就有很大的不确定性。更为棘手的是,这些统计更多的是世界各地的各自统计,很难弄清全球二氧化碳的分布、排放情况和变化趋势。
但如果有一颗挂在地球之上的卫星,每天都在绕着地球跑圈,卢乃锰说,经过几个月,就能把全球每个角落的二氧化碳情况都看到。
碳卫星计划应此而生。
事实上,气候和气候变化导致人类生存条件的变化,已不仅是科学问题,更是世界各国政府共同关注的政治问题、经济问题和外交问题。这也是为何继日、美之后,中国依然要发射自主研制的碳卫星。
正如科技部国家遥感中心总工程师李加洪所说,中国政府研制并发射碳卫星,对全球大气中二氧化碳浓度进行动态监测,进而给出全球碳分布数据,不仅是中国应对全球气候变化采取的积极行动,而且也体现了负责任大国的担当。
如何算出二氧化碳排放这本账
碳卫星工程副总指挥、中科院国家空间科学中心副主任龚建村说得更为直白,“别人有,不代表我们就不需要了,别人有,我们更要有。”
在他看来,要科学发展,就必须有科学数据的支持,未来,一旦进行碳交易,不能人家说多少就是多少,二氧化碳排放量这本账要算清楚。如今,碳卫星的成功发射,将大大提升中国在国际气候变化方面的话语权。
要造出这样一颗卫星并不容易。
自从2009年哥本哈根世界气候大会之后,全世界都在持续关注二氧化碳问题,同一年,日本发射了碳卫星GOSAT,美国在经历了一次失败后,锲而不舍,最终在2014年发射了碳卫星OCO 。
尽管碳卫星是个只有几百公斤重的小卫星,却有着令人望而生畏的技术难度,尤其是灵敏度。
根据碳卫星载荷系统CO 探测仪负责人、中科院长春光机所研究员郑玉权的说法,当前CO 浓度变化很快,但从数字上看,平均每年也只是在零点几个ppm(浓度单位,记者注)到1个ppm之间变化,想把信号探测出来,仪器灵敏度不高的话,只能作罢。
中国碳卫星做到了。郑玉权说,几十纳米的带宽上,人眼看是一个颜色,而通过CO 探测仪的2000多个通道,碳卫星就具备了微小差异颜色的区分能力,其灵敏度可以发现1到4个ppm二氧化碳的变化,这不亚于美国OCO 的水平。
有了碳卫星,如何算出全球范围内二氧化碳排放这本账,也是个难题。根据专家的说法,要获得一张覆盖全球二氧化碳监测图,需要碳卫星在太空跑2到3个月。
那么,3个月后,全球范围内二氧化碳的流动情况是什么样,即通量如何;它是从哪里排放出来的,又在哪里被植被、海洋等吸收,也就是通常所说的“源、汇”情况,又是如何?
卢乃锰表示,“通量”、“源”、“汇”这三者间有关系,但没有一个数学方程能说明“浓的地方就是源,通量就高;稀的地方就是汇,通量就低”。
这就需要把碳卫星获得的二氧化碳遥感浓度,嵌套进大气二氧化碳传播模型中。分步骤来看,首先,要有一个大气的模型,勾画出大气的流场,描述风往哪儿吹。然后,由碳卫星告诉大家,二氧化碳浓度是怎么分布的。在此基础上,科学家们进行推算,这种浓度下,它会吹到什么地方去,通量是多少。
卢乃锰说,如果多几个频次观测,就能最终知道是什么地方排放了这些二氧化碳。比如一个城市吹出去的二氧化碳多,吹进来的少,那毫无疑问,这个地方肯定有排放。
如何跟踪、寻找二氧化碳?
这一切的前提是,碳卫星能够在太空上监测、即能够“看到”二氧化碳。
鲜为人知的是,这颗卫星虽然名曰“碳卫星”,却并不能直接“看到”二氧化碳在哪里,而是要借助太阳光的照射,去跟踪经大气散射出来的光,间接地反演出大气二氧化碳浓度。
一般来说,太阳光分为赤、橙、黄、绿、青、蓝、紫七种色谱,但事实上,太阳光的色谱远不止这些。太阳光经过大气,总有一些“特定的频点”被其中聚集的二氧化碳吸收。
卢乃锰说,在反射或散射出来的光中,如果“特定的频点”很弱,那么可以推断,这里的二氧化碳分子比较密集;反之,“特定频点”很强,则可推断二氧化碳分子较少。在这个过程,碳卫星就扮演眼睛的角色,去判别“强”或者“弱”,科学家据此结论,再进行他们通常所说的“反演”。
碳卫星发射
说起碳卫星的眼睛角色,就不得不提它所搭载的两个载荷:二氧化碳探测仪、云和气溶胶探测仪。前者是主载荷,通过获取高精度的大气吸收光谱,应用反演算法计算出二氧化碳的浓度。后者可以测量云、大气颗粒物等辅助信息,为精确反演CO 浓度剔除干扰因素,还可为研究PM2.5等大气污染成因提供重要数据支撑。
根据碳卫星系统总设计师、中科院微小卫星创新研究院研究员尹增山的说法,碳卫星要想进行全球观测,还需要实现灵活的观测模式,如此才能对全球陆地和海面路径上CO 的吸收光谱进行精确测量。
这种灵活多变的观测模式,形象地说,即需要碳卫星频繁调整姿态,在太空翩翩起舞:斜着,调整到耀斑观测模式,竖着,调整到天底观测模式。
比如,当碳卫星飞过海洋时,身子灵活一转,斜着身子,看太阳打在海面上的光斑,这就切换到了耀斑观测模式。
事实上,卫星领域的科学家最忌讳的,就是让卫星有没完没了的动作:毕竟是在太空,没有任何着力点,要是翻过去翻不回来了怎么办?尹增山说,恰恰是为了特定的科学目标,科学家解决了碳卫星在天上不断做动作的难题。
一旦碳卫星的“判断力”有所下降,科学家也会帮它“调整”。当要确认“强信号”观测准确与否时,就定标太阳:转个身子,盯着太阳看,因为太阳的光谱、辐射强度比较稳定,可以拿它和碳卫星观测的强度进行比较;要确认“弱信号”时,就让碳卫星盯着光谱同样稳定的月亮看。
形象地说,即在太空舞步之前,先对着镜子打扮打扮,白天跳舞对着太阳照镜子,名曰“对日定标”,夜里跳舞对着月亮照镜子,名曰“对月定标”。
如今,碳卫星已经飞向距离地面几百公里外的太空轨道。尹增山说,在经过一段时间的在轨测试后,碳卫星将开始长达3年的工作,每天记录时间长达10小时。让我们共同期待这颗中国星,早日带来一手的二氧化碳数据。
本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.