环境监测例题及答案 环境监测例题及答案解析
一、诗歌赏析例题及答案?
读《春 雪》,回答问题:
《春雪》
韩 愈
新年都未有芳华,
二月初惊见草芽。
白雪却嫌春色晚,
故穿庭树作飞花。
问题:
⑴诗中“惊”字表现了作者什么样的心情?(1分)
答:表现了作者突见春色萌芽时惊喜的心情
(2).简要赏析三、四句运用修辞手法的妙处。(3分)
答:三、四句运用拟人的修辞手法,把白雪描绘得美好而富有情趣,表现了它带给人的欣喜之感。白雪等不及春色的姗姗来迟,特意穿树飞花,装点出一派春色,突出了雪通人心的灵性。
解析“惊”字似乎不是表明诗人为二月刚见草芽而吃惊、失望,而是在焦急的期待中终于见到“春色”的萌芽而惊喜。(2) “却嫌”、“故穿”, 运用拟人的修辞手法,把春雪描绘得多么美好而有灵性,饶富情趣。
二、计算irr例题及答案?
1.(IRR-15%)/(20%-15%)=(0-6.65)/(-3.7-6.65)
IRR=15%+(20%-15%)*(0-6.65)/(-3.7-6.65)=18.21%
2.假设NPV(5%)=m,NPV(10%)=n
(IRR-5%)/(10%-5%)=(0-m)/(n-m)
IRR=5%+(10%-5%)*(0-m)/(n-m)
一般公式是NPV(r1)=m,NPV(r2)=n
IRR=r1+(r2-r1)*(0-m)/(n-m)
r1和r2最好不要相差太大,否则误差也会大些
三、函数单调区间例题及答案?
举两个简单的例子探讨之。
1.求函数y=x^2的单调区间。
解:函数y=x^2的单调递减区间为(-∞,0),单调递增区间为[0,+∞)。
2.求函数y=sin(2x-丌/4)的单调区间。
解:根据基本初等三角函数y=sinx的单调区间可知,2k丌-丌/2<2x-丌/4<2k丌+丌/2,即k丌-丌/8<x<k丌+3丌/8(k∈Z)为函数y=sin(2x-丌/4)的单调递增区间。同理可得,k丌-5丌/8<x<k丌+3丌/8(k∈Z)为函数y=sin(2x-丌/4)的单调递减区间。
四、帕德逼近例题及答案?
帕德逼近例题可以通过利用线性代数和矩阵论的方法进行推导,这里简要介绍一下其中的思路和步骤:
答:假设有一组由n个数据点构成的二元数据集 {(x1, y1), (x2, y2), ... , (xn, yn)},我们要用一个多项式函数f(x)去逼近这些数据点。
首先,我们可以将f(x)表示为一个多项式形式,如f(x) = a0 + a1x + a2x^2 + ... + amx^m,其中m为多项式的次数,a0, a1, a2, ..., am为待求的系数。
然后,我们可以将多项式的系数表示成一个向量a = [a0, a1, a2, ..., am]T,其中T表示矩阵或向量的转置。
接着,我们可以将每个数据点(x, y)表示为一个向量v = [1, x, x^2, ..., x^m],其中1表示常数项,x, x^2, ..., x^m表示多项式的各个次幂。
将所有数据点对应的向量v排列成一个矩阵X,其中每一行表示一个数据点对应的向量,可以得到如下矩阵方程:
Xa = y
其中y表示所有数据点对应的目标值向量,即[y1, y2, ..., yn]T。
为了求解未知的系数向量a,我们需要对上述矩阵方程进行求解。由于该方程通常是一个超定的线性方程组,即数据点数量n大于多项式次数m,因此我们需要使用最小二乘法来求解。最小二乘法的基本思想是通过最小化残差平方和来找到最优解。残差指的是每个数据点的预测值与真实值之间的差异,即ei = yi - f(xi)。
将残差平方和写成向量形式,即eTe,可以得到最小二乘问题的目标函数:
min ||Xa - y||2 = min (Xa - y)T(Xa - y)
通过对目标函数求导,并令导数为0,可以得到系数向量a的最优解:
a = (XTX)-1XTy
其中,XT表示X的转置矩阵,(XTX)-1表示XTX的逆矩阵。这就是帕德逼近公式的推导过程。
五、uc矩阵的例题及答案?
U/C矩阵的正确性,可由三方面来检验:
(1) 完备性检验.这是指每一个数据类必须有一个产生者(即“C”) 和至少有一个使用者(即“U”) ;每个功能必须产生或者使用数据类.否则这个U/C矩阵是不完备的.
(2) 一致性检验.这是指每一个数据类仅有一个产生者,即在矩阵中每个数据类只有一个“C”.如果有多个产生者的情况出现,则会产生数据不一致的现象.
(3) 无冗余性检验.这是指每一行或每一列必须有“U” 或“C”,即不允许有空行空列.若存在空行空列,则说明该功能或数据的划分是没有必要的、冗余的.
将U/C矩阵进行整理,移动某些行或列,把字母“C” 尽量靠近U/C矩阵的对角线,可得到C符号的适当排列.
六、分组求和经典例题及答案?
数列求和方法要看通项结构。例如通项an=3n^2十2n-1。可采用分组求和,先用公式求n^2和,再求2n-1和得Sn=n(n+1)(2n+1)/2+n^2。再例如Sn=-1+2-3+4十…十〈-1)^n(n)其中n=2k。可分奇数项和减去偶数项和。
七、支票的填制例题及答案?
答:支票的填写:
1.时间.例:贰零贰壹年零伍月贰拾壹日。用途:付工资款。小写:¥16382。大写:零十壹万陆仟叁佰捌拾贰元。
八、变倍问题的例题及答案?
例如甲数是乙数的3倍,甲数是丙数的6倍,乙数是8,甲丙各多少?解:因甲=乙Ⅹ3,甲=丙x6,所以乙Ⅹ3=丙x6,即乙=2丙,8=2丙,丙二4,甲=4X6=24
九、会计分录例题及答案?
单项选择题
甲公司为增值税一般纳税人,委托外单位加工一批应交消费税的商品,以银行存款支付加工费200万元、增值税34万元、消费税30万元,该加工商品收回后将直接用于销售。甲公司支付上述相关款项时,应编制的会计分录是( )。(分录中的金额单位为万元)
A、借记委托加工物资264,贷记银行存款264
B、借记委托加工物资230,应交税费34,贷记银行存款264
C、借记委托加工物资200,应交税费64,贷记银行存款264
D、借记委托加工物资264,贷记银行存款200,应交税费64
【正确答案】B
【答案解析】收回后直接用于销售的委托加工物资交纳的消费税应记入“委托加工物资”成本。
计算分析题:
甲公司为增值税一般纳税人,适用的增值税税率为17%,商品销售价格不含增值税;确认销售收入时逐笔结转销售成本。
2010年12月份,甲公司发生如下经济业务:
(1)12月2日,向乙公司销售A产品,销售价格为600万元,实际成本为540万元。产品已发出,款项存入银行。销售前,该产品已计提跌价准备5万元。
(2)12月8日,收到丙公司退回的B产品并验收入库,当日支付退货款并收到经税务机关出具的《开具红字增值税专用发票通知单》。该批产品系当年8月份售出并己确认销售收入,销售价格为200万元,实际成本为120万元。
(3)12月10日,与丁公司签订为期6个月的劳务合同,合同总价款为400万元,待完工时一次性收取。至12月31日,实际发生劳务成本50万元(均为职工薪酬),估计为完成该合同还将发生劳务成本150万元。假定该项劳务交易的结果能够可靠估计,甲公司按实际发生的成本占估计总成本的比例确定劳务的完工进度。
(4)12月31日,将本公司生产的C产品作为福利发放给生产工人,市场销售价格为80万元,实际成本为50万元。
假定除上述资料外,不考虑其他相关因素。
要求:根据上述资料,逐项编制甲公司相关经济业务的会计分录。(正确答案中的金额单位用万元表示)
【正确答案】
(1)
借:银行存款 702
贷:主营业务收入 600
应交税费——应交增值税(销项税额) 102
借:主营业务成本 535
存货跌价准备 5
贷:库存商品 540
(2)
借:主营业务收入 200
应交税费——应交增值税(销项税额) 34
贷:银行存款 234
借:库存商品 120
贷:主营业务成本 120
(3)
借:劳务成本 50
贷:应付职工薪酬 50
完工程度=50/(50+150)=25%
确认的劳务收入=400×25%=100(万元)
借:应收账款 100
贷:主营业务收入 100
借:主营业务成本 50
贷:劳务成本 50
(4)
借:生产成本 93.6
贷:应付职工薪酬 93.6
借:应付职工薪酬 93.6
贷:主营业务收入 80
应交税费——应交增值税(销项税额) 13.6
借:主营业务成本 50
贷:库存商品 50
十、求剪力弯矩简单例题及答案?
简支梁跨度L,承受均布荷载q作用。
以左支座为原点,向右为x坐标正方向。
则:
支座反力Rl=Rr=qL/2。
距左支座x截面的剪力V、弯矩M为:
V(x)=qL/2-qx。
M(x)=qLx/2-qxx/2。
当x=0时,
V(0)=qL/2。
M(0)=0。
当x=L/2时,
V(L/2)=0。
M(L/2)=qLL/8。
本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.