当前位置:首页 > 废气处理 > 正文内容

催化燃烧rt0与rc0区别(催化燃烧rto和rco)

2023-04-01 12:51:36废气处理1

一、催化燃烧与uv光解的区别?

uv光解催化和催化燃烧区别比较大,光氧催化设备比较简单,净化废气主要靠uv紫外线灯管和二氧化钛催化网,外形尺寸比较小,而催化燃烧设备的占地面积都比较大,最小的占地也得7~8米长度,配置也比较复杂,比如有防火系统,喷淋系统,吸附脱附系统,再就是投资比较的话,区别也是很大的,光氧催化的价格1800元就可以买一台,而催化燃烧,通常是4~5万元起步。

二、rto废气处理原理与催化燃烧区别?

RTO,是指蓄热式热氧化技术,英文名为“Regenerative Thermal Oxidizer”。RTO蓄热式热氧化回收热量采用一种新的非稳态热传递方式,原理是把有机废气加热到760℃以上使废气中的VOC氧化分解成CO2和H2O。氧化产生的高温气体流经特制的蓄热体,使蓄热体升温而“蓄热”,此蓄热用于预热后续进入的有机废气,从而节省废气升温的燃料消耗。如果RTO焚烧炉运行管理不善,车间废气处理控制不好,往往造成运行能耗大、成本高,企业往往因过高的成本而停止运行,仅仅当作形象工程。

在运行过程中,应优化控制手段,在废气进炉膛前,尽可能除掉入口喷淋塔带来的水分,减少水分汽化所需热量;同时,还应优化进出风时间、保持燃烧室温度、加强阀门密封度等,还可在进气风管采用计量泵与蒸发器组合的方式,人为控制一些不可套用的废溶剂的蒸发,在废气VOC较低时提高VOC浓度,以达到不使用燃料就能维持正常燃烧的目的,从而减少燃料消耗。一般来说,维持正常运行对VOC浓度的要求远低于其爆炸下限,还可根据炉膛温度随时调整或关闭废溶剂的蒸发,所以其安全风险是可控的。

催化燃烧法,简称RCO,是在催化剂的作用下,将VOCs在200~400℃的低温条件下分解为CO2和H2O,是净化碳氢化合物等有机废气、消除恶臭的有效手段之一。在有机废气特别是回收价值不大的有机废气净化方面,比如化工、喷漆、绝缘材料、漆包线、涂料生产等行业应用较广。与热力燃烧法相比,催化燃烧所需的辅助燃料少,能量消耗低,设备设施的体积小。RCO具有RTO(蓄热式热力焚化炉)高效回收能量的特点和催化反应的低温工作的优点,将催化剂置于蓄热材料的顶部,来使净化达到最优,其热回收率高达95%。

工作原理:

在工业生产过程中,排放的有机尾气通过引风机进入设备的旋转阀,通过旋转阀将进口气体和出口气体完全分开。气体首先通过陶瓷材料填充层(底层)预热后发生热量的储备和热交换,其温度几乎达到催化层(中层)进行催化氧化所设定的温度,这时其中部分污染物氧化分解;废气继续通过加热区(上层,可采用电加热方式或天然气加热方式)升温,并维持在设定温度;其再进入催化层完成催化氧化反应,即反应生成CO2和H2O,并释放大量的热量,以达到预期的处理效果。经催化氧化后的气体进入其它的陶瓷填充层,回收热能后通过旋转阀排放到大气中,净化后排气温度仅略高于废气处理前的温度。系统连续运转、自动切换。通过旋转阀工作,所有的陶瓷填充层均完成加热、冷却、净化的循环步骤,热量得以回收。

三、vocs的热力燃烧与催化燃烧有什么区别?

嵩安企业环保管家来回到这个问题

直接燃烧法是指当燃烧气体的同时,通过氧化及高温下的热分解的方法,将燃烧室中有害的VOCs进行降解,将有害的VOCs气体输入到燃烧室后,当高温、充足空气等客观因素条件完善的前提下,将有害废气充分燃烧完全,*终使其完全分解成CO2和H2O。而直接燃烧法就是燃烧可燃的这一类VOCs废气,该方法在处理高浓度VOCs废气方面,表现出的效果较佳,但相应的对温度的控制要求很高,必须在高温的条件下,当温度在1100℃附近,去除效率可达95%以上,但是如果当废气中含有Cl、S、N等元素时,则直接燃烧法会产生HCl、SOx、NOx等有害气体,造成二次污染。

催化燃烧技术是近几十年在国家大力倡导环保与节能趋势下而发展的一门新型技术。催化燃烧法是使用不同种类的催化剂,利用其可以有效降低反应活化能的原理,使VOCs在温度比较低的情况下,将其完全氧化为CO2和H2O,一般当温度控制在300℃~450℃的范围内,绝大部分碳氢化合物可在被其氧化,并且去除率高达95%以上,但是催化剂有一定的使用寿命,且在催化剂的使用过程中,废气的湿度和种类对催化剂的催化氧化效果有很关键的影响,如果废气中出现其他物质,很可能会引发催化剂的中毒,故优质的催化剂应具备高活化能力、高热稳定能力和水热稳定能力等特点,目前应用比较多的金属氧化物催化剂有Pd、Pt、Rh、Au、Mn、Co、Ce,而其中Pd、Pt、Rh、Au为贵金属。然而贵金属有价格昂贵、且易烧结等缺点,因而开发新型复合型催化剂是未来的研究方向。

四、直接催化燃烧和蓄热式催化燃烧的区别?

蓄热式催化燃烧法(regenerative catalytic oxidizers,RCO)是在蓄热式焚烧法(RTO,regenerative thermal oxidizers)的基础上发展起来的,两者的最大不同之处是催化燃烧的温度不同,RTO需要在800℃以上的高温,高温会产生NOX二次污染物;而RCO催化燃烧只需要300~500℃之间的温度,因此RCO催化燃烧更节能、安全,完全不产生NOX。

RTO蓄热焚烧系统技术简述,RTO(Regenerative Thermal Oxidizer,简称RTO),又称蓄热式焚烧器。主要包括蓄热室、氧化室、风机等,它通过蓄热室吸收废气氧化时的热量,并用这些热量来预热新进入的废气,从而有效降低废气处理后的热量排放,同时节约了废气氧化升温时的热量损耗,使废气在高温过程中保持着较高的热效率(95%左右),其设备安全可靠、操作简单、维护方便,运行费用低,VOCs去除率高。

蓄热式燃烧法(RTO)是利用燃气或者燃油等辅助燃料燃烧,将混合气体加热,使有害物质在高温作用下分解为无害物质;适用于高浓度、小风量的废气蓄热式燃烧炉对有机废气的净化效率可达99%,主要适用于中低风量、高浓度、中高温度的有机废气,一次投资成本大,能量回收效率高,运行费用较低,一般与转轮配套使用,处理效果好,无二次污染。投资成本高,运行费用适中,处理效率很高,维护成本适中

蓄热式废气处理炉(RTO)适用于大风量、低浓度,适用于有机废气浓度在100PPM—20000PPM之间。其操作费用低,有机废气浓度在450PPM以上时,RTO装置不需添加辅助燃料;净化率高,两床式RTO净化率能达到98%以上,三床式RTO净化率能达到99%以上,并且不产生NOX等二次污染;全自动控制、操作简单;安全性高。

蓄热式热氧化器(RegenerativeThermal Oxidizer,简称RTO)是一种用于处理中低浓度挥发性有机废气的节能型环保装置。适用于大风量、低浓度,适用于有机废气浓度在100PPM—20000PPM之间。其操作费用低,有机废气浓度在450PPM以上时,RTO装置不需添加辅助燃料;净化率高,两床式RTO净化率能达到98%以上,三床式RTO净化率能达到99%以上,并且不产生NOX等二次污染;全自动控制、操作简单;安全性高。

RTO催化燃烧设备和RCO蓄热式燃烧工艺相对应用于普遍,运营成本低。RCO牵涉到催化剂替换,后期确保成本略高。如果支出充裕,应优先考虑到RTO。

工业废气处理设备运行可靠。1、工业废气处理设备尽量采用成熟的先进技术,或经示范工程验证的新技术、废气处理设备新产品和新材料 ,奠定连续运行、安全运行的可靠性基础。2、具备关键备件和易耗件的供应与保障基地。3、编制工业废气处理运行规程,建立工业废气设备有序运作的软件保障体系。4、培训专业技术人员和岗位工人,废气处理设备实施岗位工人持证上岗制度,科学组织工业处理废气设备的 运行、维护和管理

五、催化氧化和催化燃烧的区别?

催化燃烧是用催化剂使废气中可燃物质在较低温度下氧化分解的净化方法。所以,催化燃烧又称为催化化学转化。由于催化剂加速了氧化分解的历程,大多数碳氢化合物在300~450℃的温度时,通过催化剂就可以氧化完全。

与热力燃烧法相比,催化燃烧所需的辅助燃料少,能量消耗低,设备设施的体积小。但是,由于使用的催化剂的中毒、催化床层的更换和清洁费用高等问题,影响了这种方法在工业生产过程中的推广和应用。

六、光氧催化和催化燃烧的区别?

光氧催化和催化燃烧区别比较大,光氧催化设备比较简单,净化废气主要靠uv紫外线灯管和二氧化钛催化网,外形尺寸比较小,而催化燃烧设备的占地面积都比较大,最小的占地也得7~8米长度,配置也比较复杂,比如有防火系统,喷淋系统,吸附脱附系统,再就是投资比较的话,区别也是很大的,光氧催化的价格1800元就可以买一台,而催化燃烧,通常是4~5万元起步。

七、催化燃烧跟活性炭催化燃烧有什么区别?

催化燃烧技术(RCO)是什么?

催化燃烧是借助催化剂在较低起燃温度下(200~400℃),实现对有机物的完全氧化,因此,能耗少,操作简便,安全,净化效率高,在有机废气特别是回收价值不大的有机废气净化方面,比如化工,喷漆、绝缘材料、漆包线、涂料生产等行业应用较广。

催化燃烧原理

借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H20,同时放出大量热。

1)起燃温度低,反应速率快,节省能源。催化燃烧过程中,催化剂起到降低VOCs分子与氧分子反应的活化能,改变反应途径的作用。

2)处理效率高,二次污染物和温室气体排放量少。采用催化燃烧处理VOCs废气净化率通常在95%以上,终产物主要为CO2和H20。由于催化燃烧温度低,大量减少NOx的生成。辅助燃料消耗排放的CO2量在总CO2排放量中占很大比例,辅助能源消耗量减少,显然减少了温室气体CO2排放量。

3)适用范围广,催化燃烧几乎可以处理所有的烃类有机废气及恶臭气体,适合处理的VOCs浓度范围广。对于低浓度、大流量、多组分而无回收价值的VOCs废气,采用催化燃烧法处理是经济合理的。

直接燃烧与催化燃烧的区别

直接燃烧(热力燃烧)就是把气体温度提高到自身可燃烧的温度,一般需要850℃,类似于垃圾焚烧。催化燃烧就是在催化剂的帮助下,使VOCs的燃烧温度降低,反应可以在320℃左右发生,详见下图。 从而降低了有机废气净化装置的投资和运行费用,以及减少燃烧过程中辅助燃料的消耗和氮氧化物的排放。

主流催化燃烧工艺

蓄热式催化焚烧装置(RCO)

RCO结合了RTO和CTO装置的优点,RCO由蓄热体和定制化的催化剂组成。运行过程中,有机废气进入系统,先通过蓄热体预热,废气温度迅速上升,在反应室经催化剂作用,在250-350℃反应温度下发生氧化反应,有机废气被氧化成CO2和H2O,并放出大量热量,之后高温清洁空气再经过蓄热体,进行热量回收后,温度迅速降低,最后,低温洁净的气体经过烟囱排放。

BME蓄热式催化焚烧装置(RCO)由切换阀、带蓄热体的蓄热室、带载体的催化剂以及燃烧室所构成。通过下述动作对VOCs废气进行处理。 第一周期,通过阀门进入事先蓄热的第一室,蓄热室将热量传递给废气,废气达到反应温度后,在催化剂层上发生氧化反应, 反应后气体通过第二室,蓄热体蓄热,气体得到冷却,蓄热体温度得到提高,经处理后的废气排出。第二周期,通过阀门,废气进入第二室,未处理的低温气体进入已蓄热的蓄热体,然后发生催化反应,将热量传递给第一 室的蓄热体,然后处理的废气排出。

通过对阀门的精确控制,如此循环,实现废气的催化氧化反应和热量的循环。

BME RCO主要有如下5个特点:

●设备的净化效率可高达99%以上,净化效率高;

●设备中有机成分达到一定浓度时,其燃烧热量足以维持设备正常运转;无需外加燃料,运行费用低;

●RTO设备的净化温度一般在700-1000℃之间,安全性高;RCO设备的净化温度一般在300-500℃之间安全性高 ;

●设备的热回收效率一般均可达95%以上,结构简单,控制程序简单;

●设备净化过程更加充分,净化过程不产生NOx等二次污染;

该系统可应用范围包括:

涂覆行业、家具行业、涂料行业、化学工业、石油炼化工艺、PTA 尾气处理、汽车及机械制造业、电子制造业、印刷线路板(PCB)有机废气、电气制造业、漆包线绝缘有机废气等。

八、催化燃烧的原理与应用?

所谓催化燃烧,简而言之,在催化剂的作用下,有机废气在低温下迅速氧化水和二氧化碳,从而达到处理的目的。催化燃烧是20世纪40年代末发展起来的一种典型的气固催化反应.目前,它已广泛应用于油漆、橡胶加工、塑料加工、树脂加工、皮革加工、食品工业和铸造等行业,也用于汽车尾气净化等领域。对油漆、印刷、机电、家电、制鞋、塑料及各种化工车间有害有机废气的处理,以及不适宜直接燃烧或催化燃烧、吸附回收的低浓度有机废气,效果显著。

吸附剂作为吸附技术的关键部分,对吸附效率有着至关重要的影响。常见的吸附剂可分为有机吸附剂和无机吸附剂,以活性炭和分子筛为代表。活性炭的吸附容量高,成本低,但活性炭的耐温性和耐湿性低于分子筛,分子筛的吸附能力较低,成本较高,但可用于较高的温度和湿度条件下,因此,可根据不同吸附剂的不同使用。催化燃烧有两种,一种是活性炭吸附浓度催化燃烧法,另一种是分子筛吸附催化燃烧法。本文对活性炭吸附催化燃烧法进行了研究。

该装置根据吸附(高效率)和催化燃烧(节能)两个基本原理设计。首先,预处理阶段是确保进入活性炭吸附塔的废气中的颗粒物小于5mg/m3。该项目在前端安装了干式过滤除尘器。干式过滤器包括初始和中间过滤模块。其目的是去除废气中催化剂的灰尘、液滴和毒物,并确保不造成催化剂床的堵塞和催化剂中毒。吸附效果差,缩短了活性炭的使用寿命。

预处理后,有机废气被活性炭层吸附,有机物被活性炭的特殊力吸附,清洁气体被排放。一段时间后,当活性炭达到饱和时,吸附停止,有机物集中在活性炭中。然后通过催化燃烧解吸恢复活性炭的吸附容量。

由于催化剂具有催化活性温度,因此对于催化燃烧,称为催化剂点火温度,尾气和床层温度必须达到点火温度才能催化燃烧,因此必须设置预热装置。但由于废气本身温度较高,如漆包线、绝缘材料、烤漆等干燥废气,温度可达300℃以上,无需设置预热装置。热交换器和床层内的管道分布可用于预热装置加热的热气。预热器的热源可以通过烟气或电加热。当催化反应开始时,通过回收反应热,可以尽可能地预热废气。为了节约能源,应在反应热较大的情况下设置余热回收装置。

在装置中,在催化净化装置中设置加热室,启动加热装置,进入内部循环。当热气源达到有机物的沸点时,有机物从活性炭中挥发出来。进入催化室,催化分解成水和二氧化碳,同时释放能量。当释放的能量重新进入吸附床进行解吸时,加热装置完全停止工作,催化燃烧室中的有机废气自燃,废气再生,有机物再循环,直至有机物与活性炭完全分离。催化室分解。活性炭再生,有机物分解。

预热废气的热源温度一般超过催化剂的活性温度。为了保护催化剂,加热装置应与催化燃烧装置保持一定距离,以便排气温度能够均匀分布。该装置连续工作有两个气路,一个催化燃烧室和两个吸附床交替。有机废气先用活性炭吸附,再用热风解吸再生活性炭。解吸的有机物已经浓缩(比原始浓度高几倍),并送入催化燃烧室进行催化燃烧,以产生二氧化碳和水蒸气。当有机废气浓度超过2000PPm时,有机废气可以在不需外加热的催化床中保持自燃。燃烧后,部分废气排放到大气中,大部分排放到吸附床中进行活性炭的再生。这样既能满足燃烧和吸附所需的热能,又能达到节能的目的。再生后,可进入下一次吸附;解吸时,可在另一吸附床上进行净化操作,既适合连续操作,也适合间歇操作。

活性炭吸附催化燃烧的主要处理技术

预处理工艺:由于废气中含有一定数量的粉尘,如果吸附材料(蜂窝活性炭)进入吸附装置而不直接去除,容易造成吸附材料(蜂窝活性炭)微孔堵塞,严重影响吸附效果,增加系统阻力。该工艺在吸附床前设置高效复合过滤器作为预处理器,利用过滤器的精细结构,有效地去除废气中的粉尘和其它粉尘及烟雾物质。因此,当进入固定吸附床时,可以有效地截获和过滤由排气和油漆雾引入的废气中的灰尘。干式过滤采用一次和二次处理,以确保废气不含灰尘和微粒。过滤器将被设计成易于维护,便于拆卸和安装。压差开关实时显示压力损失,当压差超过设定压力时,向PLC发送报警信号,使用户能够及时更换滤料。

有机废气吸附过程:处理后的有机废气从风管中抽出,进入干式过滤器,除尘,进入活性炭吸附床。吸附床的数目可以根据气流的大小(一次吸收、一次去除或两次吸收、一次去除或多次吸收和一次去除)来确定。气体可以通过阀门切换进入不同的吸附床,它们交替工作。当气体进入吸附床时,气体中的有机物被活性炭吸附并附着在活性炭表面,从而气体可以被净化,并且净化后的气体通过风扇排放到大气中。

吸附床为活性炭吸附床

用内活性炭层和各种空气分布器吸附和浓缩有机气体是整个装置的主要部件和核心工序。活性炭按抽屉式上下六层加载。

吸附原理:用多孔固体材料处理流体混合物时,流体的某一组分或某一组分可被吸引到固体表面,并集中在固体表面。这种现象叫做吸附。在气态污染物的处理中,所处理的流体是气体,属于气固吸附。吸附气体组分称为吸附剂,多孔固体称为吸附剂。

活性炭以优质无烟煤为原料。其主要特点是强度高、吸附速度快、吸附容量大、比表面积大、孔隙结构发达。孔洞大小介于椰子壳活性炭和木材活性炭之间。

注氮电磁阀安装在活性炭解吸管道上。在对活性炭吸附床进行解吸分析时,系统自动控制电磁控制阀的数量和时间,将氮气注入活性炭吸附箱,从而降低活性炭吸附床的氧含量,防止活性炭解吸过程中的火灾危害

催化燃烧床

如前所述,催化燃烧是一种利用低温催化剂净化有害气体中易燃成分的方法。对于HC和有机溶剂,蒸汽氧化分解成二氧化碳和水并释放热量。

催化燃烧要求将被净化的有害气体均匀混合,预热至催化剂所要求的点火温度,使有害气体中的可燃组分开始氧化放热反应。

催化燃烧床的主要功能如下:

1)内部加热元件产生热能后,通过风扇和连接管道将热风吹入活性炭床,从而对活性炭床进行加热。

2)温度变化后,有机物从活性炭中蒸发并分解。在鼓风机负压的指导下,有机物通过解吸管道进入催化燃烧床,再加热,与填充在催化燃烧床内的贵金属催化剂反应,有机物经二次分解净化。

3)当催化床温度达到250~300℃时,有机物开始发生反应,当反应热达到一定值(即无动力运行状态)时,加热元件停止工作。

4)活性炭脱附后空气体积小,高浓度有机废气首先进入换热器换热,实现余热的回收,换热器通过加热器(用多组电加热管加热)进一步加热废气,有机废气加热后,在催化剂的作用下,达到废气的着火温度。废气进入催化燃烧床,在催化剂的作用下,有机组分在高温下裂解成CO2和H2O,有机废气热解释放的热量进一步提高了气体温度。净化后的尾气可通过两级换热器回收.

催化燃烧预热废气加热采用无污染、稳定的电加热方式。电热管分为若干组,由电子控制箱自动控制。系统温度由PLC联锁。当废气温度低于一定温度时,电热管会自动连接电源对废气进行加热。当废气温度高于一定温度时,电热管会自动断裂。打开一组、两组、多个或全部电源,以节省电力,实现安全运行。当解吸气中的废气浓度达到4000mg/m3左右时,基本实现了热量的自平衡,无需打开电加热即可达到节能的目的。催化燃烧反应是典型的气固催化反应。催化燃烧反应的实质是在一定温度下,吸附在催化剂表面的有机化合物(VOCs)与空气中的氧气发生反应,催化氧化,彻底氧化分解成无害的CO 2和H 2 O,释放出反应热。借助于催化剂,可大大降低有机物的着火温度,实现无焰燃烧,降低预热能耗和NOx的生成。

5)活性炭的脱附再生过程:吸附床饱和时,可启动脱附风机对吸附床进行脱附。解吸气体首先通过催化床内的换热器,然后在电加热器的作用下进入催化床中的预热器。将气体温度提高到280℃左右,然后通过催化剂将有机物在催化剂下燃烧,分解为CO2和H2O。同时,释放出大量的热量,提高了气体温度。高温气体再次通过换热器。与进入的冷空气交换热量,并回收部分热量。从换热器中分离出的气体分为两部分:一是直接空出,二是在吸附床上进行活性炭解吸。当解吸温度过高时,可以启动制冷机,使脱附气体温度在适当的范围内保持稳定。活性炭吸附床的温度超过报警值。

安全设计:催化净化装置前后均设有消防除尘系统,设备顶部设有减压系统。

内外设备均配有静电装置,高空管道均配有防雷装置。

该设备配有多点温度控制点、自动报警系统和过温自动冷却系统。

该设备配有风扇过载保护、超温保护、防火链保护、安全防火阀在设备入口,高温时消防阀门关闭,直线阀自动开启。

解吸过程中,当控制和监控系统出现故障或故障时,温度控制器会自动报警,停止加热,并自动打开系统。解吸风机运行时,会突然出现故障加热系统和风机联动现象。加热将自动停止,冷却系统将自动打开,直通线路系统将被激活。

脱附过程中,97%的氮气间歇注入,97%的氮气在脱附后注入活性炭吸附床。

九、分解燃烧与蒸发燃烧区别?

蒸发燃烧是指熔点较底的可燃固体,受热后熔融,然后像可燃液体一样蒸发成蒸气而燃烧。如硫、沥青、石蜡、高分子材料、萘和樟脑等。

分解燃烧是指分子结构复杂的固体可燃物,在受热分解出其组成成分及加热温度相应的热分解产物,在氧化燃烧。如天然高分子材料中的木材、纸张、棉、麻、毛以及合成高分子纤维等。

十、ro催化燃烧原理?

第一步是催化剂对VOC分子的吸附,提高了反应物的浓度,第二步是催化氧化阶段降低反应的活化能,提高了反应速率。

借助催化剂可使有机废气在较低的起燃温度下,发生无氧燃烧,分解成CO2和H2O放出大量的热,与直接燃烧相比,具有起燃温度低,能耗小的特点,某些情况下达到起燃温度后无需外界供热,反应温度在250-400℃。

本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.

本文链接:http://www.shgreenbox.com/fwcl/98742572.html

标签: {$tag}