地球早期大气的主要成分是什么?
一、地球早期大气的主要成分是什么?
大气圈是地球外圈中最外部的气体圈层,它包围着海洋和陆地。大气圈没有确切的上界,在2000 ~ 16000 公里高空仍有稀薄的气体和基本粒子。在地下,土壤和某些岩石中也会有少量空气,它们也可认为是大气圈的一个组成部分。地球大气的主要成份为氮、氧、氩、二氧化碳和不到0.04%比例的微量气体。地球大气圈气体的总质量约为5.136×1021克,相当于地球总质量的百万分之0.86。由于地心引力作用,几乎全部的气体集中在离地面100公里的高度范围内,其中75%的大气又集中在地面至10公里高度的对流层范围内。根据大气分布特征,在对流层之上还可分为平流层、中间层、热成层等。 内部大量放射性元素的裂变和衰变所释放出的能量的积聚和迸发、陨星对地表的频繁撞击等,导致了地球火山的强烈活动,使地球温度升高到出现局部熔融,重元素沉入地心,轻物质浮升到地表,逐渐形成地壳(岩石圈)、地幔和地核等层次。与此同时,被禁锢在地球内部的气体不断迸发出来,形成原始大气圈,其主要成分为H2O、CO、CO2、CH4和N2等。当时不含有氧气,这是一个还原性大气圈。水气凝结后在低凹处汇聚成海洋(水圈),地表水呈酸性。上述过程历时约10亿~15亿年。显然,早期地表环境的显著特征是缺氧,也没有臭氧层,太阳辐射中的高能紫外线可直接射到地面上。大气—地球的外衣 如果我们乘坐宇宙飞船或航天飞机俯看地球,地球被一层淡蓝色的外衣包裹着,这层外衣就是地球大气(也称为大气圈)。地球大气是地球上一切生命赖以生存和进化的基础环境条件,也是人类和地球生物的"保护伞"。大气是由多种气体混合而成的,其中氮气最多,约占78%,其次是氧气约占21%,其余为氩、二氧化碳、臭氧、水汽等微量气体。大气中还悬浮着水滴、冰晶、尘埃等液体、固体微粒。从地面到大气上界,可分为对流层、平流层、中层、热层、外逸层。大气的密度随着高度的升高而减小,大约30%的大气质量集中在3000米以下的大气层里;5500米高度是个中线,以上和以下的大气质量是相等的。大约90%的大气质量集中在16.5公里以下的低层大气里,32公里以上的大气质量还不到整个大气质量的1%。与人类活动息息相关的天气现象和天气系统主要发生在对流层中,对流层的厚度在中纬度地区为10公里左右。 地球的外衣--地壳 地球是由外部圈层和内部圈层两大部分构成的。外部圈层包括大气圈、水圈和生物圈;内部圈层包括地壳、地幔和地核三部分。地壳是内部圈层的最外层,由风化的土层和坚硬的岩石组成,所以地壳也可称为岩石圈。 地壳只占地球体积的0.5%。如果把地幔、地核比作蛋清和蛋黄,那地壳就像蛋壳。 地壳的厚度在地球各地是不同的。有的地方较厚,如我国青藏高原厚度可达60-80千米;有的地方较薄,如大西洋海盆厚度仅有5-6千米,太平洋海盆厚约8千米。海陆地壳的平均厚度约为33千米,仅占地球半径的1/200。 地壳虽然很薄,但它上下层的物质结构并不相同。地壳的上部主要由密宽较小、比重较轻的花岗岩组成。它的主要成分是硅、铝元素,因此,这一层又称为"硅铝层"。地壳的下部主要由密度较大、比重较重的玄武岩组成。它的主要成分是镁、铁、硅元素,所以这一层又称"硅镁层"。在大洋底部,由于地壳已经很薄,一般只有硅铝层而没有硅镁层。此外,在地壳的最上层,还有一些厚度不大的沉积岩、沉积变质岩和风化土,它们构成地壳的表皮。 地壳并不是静止不动和永久不变的。在漫长的地球历史中,沧海桑田的巨变时有发生。大陆漂移、板块运动、火山爆发、地震等等都是地壳运动的表现形式。地壳还受到大气圈、水圈和生物圈的影响和侵蚀,形成各种不同形态和特征的地壳表面。其中土壤与人类的活动关系最为密切。 在地壳中,蕴藏着极为丰富的矿床资源。目前已探明的矿物就有2千多种,其中金、银、铜、铁、锡、钨、锰、铅、锌、汞、煤、石油等,都是人类物质文明不可缺少的资源。
二、地球原始大气主要成分是哪些?
原始大气
原始大气主要成分一氧化碳、二氧化碳、甲烷、氨、硫化氢、水蒸气等,原始大气没有氧气。简介地球形成过程中,较重的物质通过碰撞合并为原始地球的核心,少量气态物质如氢和氦等环绕着地球,这就是最原始的大气。原始大气在经过高温,高压,雷电,紫外线等恶劣自然环境中,产生了能够构成生命的有机物,并没有直接产生原始生命。
基本信息
中文名
原始大气
外文名
primitive air
相关术语
大气演化
三、大气的成分?
解:大气的成分包括:干洁空气、水汽和其他固体杂质
干洁空气包括氮气、氧气、二氧化碳、臭氧、氩气等其他成分。
地球上的大气,有氮、氧、氩等常定的气体成分,有二氧化碳、一氧化二氮等含量大体上比较固定的气体成分,也有水汽、一氧化碳、二氧化硫和臭氧等变化很大的气体成分。其中还常悬浮有尘埃、烟粒、盐粒、水滴、冰晶、花粉、孢子、细菌等固体和液体的气溶胶粒子。
气体成分
氮78.084%、氧20.946%、
氩0.934%、水汽0.25%、
二氧化碳0.032%、 氖0.0018%、
氦0.00052%、甲烷0.0002%、
氪0.0001%、氢0.00005%、
氙0.000008%、臭氧0.000001%、
其他0.001421%
在高度60 km以下大都是中性分子;从60 km向上,白天在太阳辐射作用下开始电离,在90 km以上,则大都处于电离状态。高层大气中,有些成分还分解为原子状态。
包围地球的空气称为大气。象鱼类生活在水中一样,我们人类生活在地球大气的底部,并且一刻也离不开大气。大气为地球生命的繁衍,人类的发展,提供了理想的环境。它的状态和变化,时时处处影响到人类的活动与生存。
四、大气的成分有哪些?
大气的成分很复杂,除了氧气和氮气外,还有氢、二氧化碳、氦、氖、氩、氪、氙、臭氧等气体。氮和氧分别占了空气总容积的78.09%和20.95%,其他气体的总和还不到空气总容积的1%。大气层中还含有一定数量的水和各种尘埃杂质,是形成云、雨、雾、雪的重要物质。
大气圈里的空气虽然看不见,但质量大得惊人。据科学家估算,整个地球周围有5000多亿吨重的空气。住在地球上的人,如果没有人体内向外的压力,会被压得粉身碎骨。由于地球引力的作用,大气质量的十分之九都集中在近地面的16公里以内的大气层里。离地面越高,空气就越稀薄。
五、地球大气被称为氮氧大气的原因?
我们地球的大气层是由78%的氮气、21%的氧气以及其他诸如水蒸气和二氧化碳等痕量气体组成。相对于其他行星的大气层而言,这是一种比较奇怪的混合。木星和土星主要由氢气和氦气组成;金星那厚厚的大气层中有大约96%为二氧化碳,而只有3%的氮气,火星那稀薄的大气层中的气体比例与此相类似。那为什么我们地球的大气层是主要由氮气构成的呢?
事实上,情况并非总是如此。就像大多数行星一样,地球最早的大气主要是氢和氦组成。这两种元素是目前宇宙中最为丰富的,恒星的最主要成分就是氢,其次是氦。在宇宙大爆炸所产生的原子之中,有大约92%是氢,其余的大部分是氦。而元素周期表中的所有其他元素都是通过诸如在恒星中心进行核聚变等天体物理过程中形成的。时至今日,这些天体物理过程只形成了很少量的宇宙元素。
整个太阳系都是诞生自同一片太阳星云
因为恒星与行星都是形成自同一片星云,所以当行星最初形成之时,其成分主要是氢和氦。一些氢会与其他元素成键,但大多数仍然是游离的氢。氢和氦都是轻元素,所以它们会倾向于挥发进入太空。诸如木星等气态巨行星有着足够的引力来束缚住大部分的氢和氦,这就是为什么这些元素主导了气态巨行星的大气层。但是地球的引力不够强大,所以地球早期大气层中的氦和游离氢挥发进入太空。
在剩下的元素中,碳、氮、氧是最丰富的。这是基于这样的事实:在大型恒星中的主要核聚变反应是碳氮氧循环,作为副产物产生了碳氮氧这些元素。这些元素很容易与其他元素发生反应,并产生诸如水(H2O)、二氧化碳(CO2)和氨(NH3)等气体。年轻地球的地质活动要比今天活跃得多,而火山活动释放出了大量的这些气体,然后随着时间的推移,它们主宰了地球的大气层。
那为什么金星和火星的大气层主要是由二氧化碳组成,而地球的则不是呢?所有的这一切都要归结于水。地球的火山活动驱使地球大气层变成金星和火星那样被二氧化碳主导,但地球也拥有大量液态水的海洋。二氧化碳易溶于水之中,所以我们的海洋吸收了大气中的二氧化碳,留下一个主要由氨组成的大气。
结果是,氨在地球大气层中不稳定。当被来自太阳的紫外线照射时,氨就会分解成氮和氢。然后,游离出的氢挥发进入太空,留下了就是氮。金星的大气层也可能遵循了类似的过程,但是没有广阔的海洋来把二氧化碳从大气中吸收出来。
即使拥有广阔的海洋,地球大气层也可能会被二氧化碳主宰而不适于生命的存在,这里还需要有关键的因素。早期的蓝藻细菌能使用阳光和溶解于地球海洋中的二氧化碳溶解来产生能量,然后氧气作为副产物被释放出。早期氧气与铁结合形成一层铁锈,但最终开始构成地球大气层的主要成分之一。蓝藻细菌消耗了二氧化碳,这样能使更多的二氧化碳溶解到海洋之中。因此,这些过程导致了地球现如今的大气主要是由氮气和氧气组成。
精彩阅读
热门阅读
六、地球现代大气和早期大气最大的区别?
地球大气层是随着地球的形成而逐步演变的,经过几十亿年的不断演化,才成为今天的状态。一般认为地球大气层分三个阶段演变而成:原始大气阶段:
大约在50亿年前,大气伴随着地球的诞生就神秘地“出世”了。也就是拉普拉斯所说的星云开始凝聚时,地球周围就已经包围了大量的气体了,此时,氢和氦就构成了早期的原始大气层。
当地球形成以后,由于地球内部放射性物质的衰变,进而引起能量的转换。这种转换对于地球大气的维持和消亡都是有作用的,这层大气寿命很短,不久便被太阳向外不断散射的强烈的粒子流形成的太阳风吹的无影无踪了;
同时,地球形成之初,质量还不大,引力较小,加上内部放射性物质衰变和物质融化引起能量转换和增温,使分子热运动加剧,氢、氦这种低分子量的气体便逃逸到空间去了。次生大气阶段:
随着地球温度不断下降,地球冷凝成固体。这时内部高温促使火山频频爆发,产生出二氧化碳、甲烷、氮、水蒸气和硫化氢、氨等具有较大的分子量的气体,它们从地球母亲怀抱中诞生,不愿离去,形成了围绕地球的第二次出现的次生大气。地球的水圈,也正是在这个阶段由水蒸汽凝结降落而形成的。今日大气阶段:
现代学者普遍认为,在生命诞生之前大气中没有氧。在40亿年前的最初阶段,原始大气中含有的氢气、氨气、甲烷和水蒸汽等化合物在雷电、火山等条件下生成了最简单的生命有机分子--氨基酸。经过漫长的演化,在30—20亿年前,原始生命诞生。接着随着单细胞的藻类的发展,绿色藻类通过光合作用释放出大量的氧(在光合作用下植物吸进二氧化碳,呼出氧气),光合作用生成了碳水化合物,这是植物细胞的基本构成部分。
此时海洋有效地阻挡了致命的紫外线辐射,使原始生命在海中繁衍起来。最后,高空氧逐渐增多,在光解作用下产生了臭氧层,它使透过大气的紫外线大为减少,促使植物进至海洋上层,又增加了光合作用的机会,从而促进植物生命的大大发展。随着这种相互间的协调和增益过程,直到4亿年前,生命终于跨过了漫长的岁月,从海洋登上了陆地。
大气层成份也逐渐稳定,慢慢演变成今天的样子。可见,大气在生命诞生以前是没有氧的,随着光合作用的出现,大气的含氧量才升但现在的水平。
七、请问地球高层大气的温度?
高层大气从下到上又分中间层、热成层和散逸层。
因为热成层里面有若干的电离层,其中的氧原子可以吸收紫外线,从而形成高层大气的热源。
中间层气温先降低后升高(距离臭氧层和电离层近的地方气温高)
热层的气温则高高低低不断波动的(因为里面有多层电离层,每一层都是一个热源),但总体来说是波动下降的。
散逸层由于距离电离层这个热源越来越远,所以其气温是越来越低得。
如果说高层大气(中间层、热层、散逸层合起来)整体气温特点是:波动下降。到宇宙空间中的时候下降到绝对零度。
八、地球大气的三大演变阶段?
原始大气 原始大气的形成与星系的形成密切有关。
宇宙中存在着许多原星系,它们最初都是一团巨大的气体,主要成分是氢。以后原星系内的气体,团集成许多中心,在万有引力作用下,气体分别向这些中心收缩。出现了许多原星体,愈收缩则密度愈大,密度愈大则收缩愈快,使原星体内原子的平均运动速率愈来愈大,温度也愈来愈高。当温度升高到摄氏1000万度以上时,原星体会发生核反应,出现四个氢原子聚变为一个氦原子的过程。较大的原星体的核反应较强,能聚变成较重的元素。按照爱因斯坦能量(E)和质量(m)方程E = mc2(c为光速),这些聚变过程会伴生大量辐射能,使原星体转变为发光的恒星体。恒星体内部存在复杂的核反应,在氢的消耗过程中,较重元素的丰度渐渐增多,并形成一些更重要的元素,光谱分析的结果是,原子丰度随原子序数增大而减少。特别巨大的星体,内部核反应特强,能使星体爆裂,形成超新星,它具有强大的爆炸压强,使其中已形成的不同原子量的元素裂成碎片,散布到星际空间中去,造成宇宙尘和气体云,随后冷却成暗云。这样,超新星的每一次爆炸,都进一步使星系内增加更多的较重元素,使星际空间内既有大量气体(以氢、氦为主),又有固体微粒。太阳系是银河系中一个旋臂空间内的气体原星体收缩而成的,因此它包含有气体和固体微粒。太阳系的年龄估计为46~50亿年,银河系的历史约比太阳系长2~3倍。 原太阳系中弥漫着冷的固体微粒和气体,它们是形成行星、卫星及其大气的原料。在原太阳系向中心收缩时,其周围绕行的固体微粒和气体,也分别在引力作用下凝聚成行星和卫星。关于太阳、行星、卫星是否同时形成,尚有不同意见:有的认为是同时形成的,有的认为是先形成太阳,后形成行星及卫星,有的认为卫星是行星分裂出的,也有认为行星和卫星的形成早于太阳。但对地球的形成约在距今46亿年前,则是比较一致的看法。原地球是太阳系中原行星之一。它是原太阳系中心体中运动的气体和宇宙尘借引力吸积而成。它一边增大,一边扫并轨道上的微尘和气体,一边在引力作用下收缩。随着“原地球”转变为“地球”,地表渐渐冷凝为固体,原始大气也就同时包围地球表面。次生大气 地球原始大气的消失不仅是太阳风狂拂所致,也与地球吸积增大时温度升高有关。温度升高的原因不仅是吸积的引力能转化为热能所致,流星陨石从四面八方打击固体地球表面,其动能也会转化为热能。此外,地球内部放射性元素如铀和钍的衰变也释放热能。上述这些发热机制都促使当时地球大气中较轻气体逃逸。 发热机制除使当时大气中较轻气体向太空逃逸外,还起到为产生次生大气准备条件的另外两种作用。①使被吸积的C1型碳质球粒陨石中某些成分因升温而还原,使铁、镁、硅、铝等还原分离出来,由于它们的比重不等,造成了固体地球的重力不稳定结构。但由于它们都是固体,没有自动作重力调整的可能。②使地球内部升温而呈熔融状态。这一作用十分重要。因为它使原来不能作重力调整的不稳定固体结构熔融,可通过对流实现调整,发生了重元素沉向地心、轻元素浮向地表的运动。这个过程在整个地质时期均有发生,但在地球形成初期尤为盛行。在这种作用下,地球内部物质的位能有转变为宏观动能和微观动能的趋势。微观动能即分子运动动能,它的加大能使地壳内的温度进一步升高,并使熔融现象加强。宏观动能的加大,使原已坚实的地壳发生遍及全球的或局部的掀裂。这两者的结合会导致造山运动和火山活动。在地球形成时被吸积并锢禁于地球内部的气体,通过造山运动和火山活动将排出地表,这种现象称为“排气”。地球形成初期遍及全球的排气过程,形成了地球的次生大气圈。这时的次生大气成分和火山排出的气体相近。而夏威夷火山排出的气体成分主要为水汽(约占79%)和二氧化碳(约占12%)。但根据H.D.霍兰(1963)的研究,在地球形成初期,火山喷发的气体成分和现代不同,他们以甲烷和氢为主,尚有一定量的氨和水汽。 次生大气中没有氧。这是因为地壳调整刚开始,地表金属铁尚多,氧很易和金属铁化合而不能在大气中留存,因此次生大气属于缺氧性还原大气。次生大气形成时,水汽大量排入大气,当时地表温度较高,大气不稳定对流的发展很盛,强烈的对流使水汽上升凝结,风雨闪电频仍,地表出现了江河湖海等水体。这对此后出现生命并进而形成现在的大气有很大意义。次生大气笼罩地表的时期大体在距今45亿年前到20亿年前之间。现在大气 由次生大气转化为现在大气,同生命现象的发展关系最为密切。地球上生命如何出现是长期争论的问题。А.И.奥巴林(1924)最早提出生命现象最初出现于还原大气中的看法,其后有S.L.米勒(1952)等人在实验室的人造还原大气中,用火花放电的办法制出了一些有机大分子,如氨基酸和腺嘌呤等。腺嘌呤是脱氧核糖核酸和核糖核酸的主要成分。所以这种实验有一定意义。但20世纪60、70年代人们利用射电望远镜发现在星际空间就有这些有机大分子,例如氨亚甲胺(CH2NH)、氰基(CN)、乙醛(CH3CHO)、甲基乙炔(CH3C2H)等。他们又曾将陨星粉末加热,发现有乙腈(CH3CN)等挥发性化合物和腺嘌呤等非挥发性化合物。于是认为生命的根苗可能存在于星际空间。但无论如何,即使“前生命物质”来自星际空间,但最简单的最早的生命,仍应出现于还原大气中。这是因为在氧气充沛的大气中,最简单的生命体易于分解、难以发展。九、地球上的大气有哪些作用?
第一代大气来源于宇宙物质吸积,主要是氢气氦气。 第二代大气来自地球物质熔融分异时的岩浆脱气作用,也就是气体从早期地球的岩浆海里释放出来,然后太阳风也吹跑了轻质量的氢气和氦气,留下水蒸气二氧化碳和氮气。 第三代大气是地表温度下降,水蒸气变成雨雪,含量大减,最终稳定成水循环。 现代大气源于生物对古代大气的改造,主要过程是光合作用吸收二氧化碳放出氧气。这个过程从30多亿年前启动,持续至今,期间也伴随着火山脱气作用。
十、地球的高层大气中有风吗?
高层大气中没有风。比如白云漂移的速度平均比乌云慢,这说明几万米高层中没有风。
因为越高空气越稀薄,当空气稀薄到一定程度时,空气热胀冷缩能量产生的影响范围,就无法波及周围的空气,所以高层大气中没有风。
在没有气象卫星之前,只能靠氢气气球研究,现在可根据气象卫星研究。
本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.