折射率的取值范围?
一、折射率的取值范围?
Cn2,根据《laserbeamscintillationwithapplication》书中介绍,Cn2数值在1e-12~1e-14是比较正常的范围,近地面条件下该数值通常可以取1e-13。 由于大气湍流强度与海拔有关,越高空大气湍流越弱,因此Cn2随着海拔高度升高而降低,高空大气Cn2数值可能降到1e-17以下。
二、研究大气湍流意义?
大气湍流运动中伴随着能量、动量、物质的传递和交换,传递速度远远大于层流,因此湍流中的扩散、剪切应力和能量传递也大得多。所以,大气湍流对飞行器的飞行性能、结构载荷、飞行安全的影响很大。飞机在大气湍流中飞行时会产生颠簸,影响乘员的舒适程度,还会造成飞机的疲劳损伤。因湍流引发的飞行事故时有发生,但通过现代技术可以有效避开强湍流或尽量降低危害程度。飞行人员应积极利用气象预报等资料,避开湍流航线;旅客要养成全程系好安全带的习惯。
在大气运动过程中,在其平均风速和风向上叠加的各种尺度的无规则涨落。 这种现象同时在温度、湿度以及其他要素上表现出来。
三、汽轮机溶氧度高是什么意思?
1、水温的影响:水温越低,溶解氧就越高。
2、水深的影响:水位越高,由于与大气中的氧气接触面积越大,则溶解氧就越高。
3、水的湍流程度的影响:在其他条件(如水的温度、密度、粘度等)不变的情况下,水的流速越大,即水的湍流程度越大,则更有利于大气中的氧气溶解于水中,因而水中的溶解氧会增大。
四、湍流和尾流区别?
湍流和尾流是两者不同的物理现象。湍流和尾流是液体或气体运动的研究中常见的概念,两者之间的区别在于它们所体现的运动特性不同,分别对应于不同的物理现象。湍流是指在流体内部出现强烈的涡旋和无规则、混沌的流动现象,形成了涡流等特定的液体动力特性。而尾流是指在空气和水的运动中,物体运动产生的向后流动的气流或液流。与湍流不同的是,尾流更多地体现了物体动力学方面的特征,例如对机械设备的影响和阻力的产生。因此,尽管湍流和尾流都是液体或气体中不同类型的流动现象,它们在动力学的特性以及在实际应用中的作用却有所不同。
五、怎样区分层流边界层和湍流边界层?
层流边界层和湍流边界层是气体在流动过程中形成的两种不同的边界层。
层流边界层具有较低的湍流强度,流体分子在边界层内按照规则的、连续的方式流动,因此其速度分布相对比较均匀。
而湍流边界层则具有较高的湍流强度,流体分子在边界层内呈现出复杂的、随机的运动状态,因此其速度分布相对较为不均匀。
判断边界层类型可以通过观察流动是否出现涡旋,并检测流动速度和流量的变化。
六、视宁度指的是什么?
视宁度指望远镜显示图像的清晰度。它取决于大气湍流活动程度。肉眼所见星体的闪烁,一般认为是高层大气湍流引起。望远镜清晰度不佳往往是低层大气湍流所致。各层大气湍流使大气中产生密度不同的不稳定区域,使光线不能顺利地直接通过并保持强度不变。
七、气象扩散条件因子?
1)风(动力因子) 空气的水平运动称为风。风对大气污染物的输送扩散有着十分重要的作用。风对大气污染物起整体输送作用;风对大气污染物有冲淡稀释作用;在大气边界层,风切变还影响湍流强度及性质,对扩散产生间接作用;其他气象因子(如大气稳定度等)都是通过风及湍流间接影响空气污染的。 2)大气湍流(动力因子) 大气湍流是指气流在三维空间内随空间位置和时间的不规则涨落,伴随着流动的涨落,温度、湿度、风乃至大气中各种物质的属性的浓度及这些气象要素的导出量都呈无规则涨落。换言之,空气的无规则运动,谓之大气湍流。湍流具有随机性。 大气湍流是大气的基本运动形式之一。大气湍流对大气中污染的扩散起着重要作用,湍流扩散是空气污染局地扩散的主要过程,是污染物浓度降低的主要原因。大气湍流的主要效果是混合,它使污染物在随风飘移过程中不断向四周扩展,不断将周围清洁空气卷入烟气中,同时将烟气带到周围空气中,使得污染物浓度不断降低。 3)大气的温度层结(热力因子) 温度是决定烟气抬升的一个因素,它的的垂直分布决定了大气层结的垂直稳定度,直接影响湍流活动的强弱,与空气污染有密切的联系,支配大气污染物的散布。 大气中的温度层结有四种类型:①正常分布层结(即递减层结),气温随高度增加而递减,这种情况一般出现在晴朗的白天风不太大时,有利于大气污染物的扩散。②中性层结。③等温层结,气温不随高度而变化,这种情况出现于多云天或阴天。不利于大气污染物的扩散。④逆温层结,气温随高度的增加而增加,这种现象一般出现在少云、无风的夜间。逆温层是非常稳定的气层,阻碍烟流向上和向下扩散,只在水平方向有扩散,处于逆温层中的气态污染物、气溶胶粒子(烟、尘、雾)等不能穿过逆温层,而只能在其下面积聚或扩散,在空气中形成一个扇形的污染带,一旦逆温层消退,还会有短时间的熏烟污染。 4)大气稳定度 大气稳定度指整层空气的稳定程度,是大气对在其中作垂直运动的气团是加速、遏制还是不影响其运动的一种热力学性质。当气层受到扰动,若原先是不稳定气层,则扰动、对流和湍流容易发展;若原来是稳定气层,则扰动、对流和湍流受到限制;若原先是中性气层,则由外界扰动所产生的空气微团运动,既不受到抑制又不能得到发展。因此,大气不稳定,湍流和对流充分发展,扩散稀释能力强,有利用污染物扩散。我国目前把大气稳定度分为六类,即强不稳定(A)、不稳定(B)、弱不稳定(C)、中性(D)、较稳定(E)、稳定(F)。其中强不稳定(A)、不稳定(B)、弱不稳定(C)三类稳定度有利于污染物的扩散,中性(D)、较稳定(E)、稳定(F)三类稳定度不利于污染物的扩散。 5)混合层高度 混合层是指边界层中存在的湍流特征不连续界面以下的大气层。混合层内一般为不稳定层结,铅直稀释能力较强。混合层高度即从地面算起至第一层稳定层底的高度。混合层高度实质上是表征污染物在垂直方向被热力湍流稀释的范围,即低层空气热力与湍流所能达到的高度。混合层高度越高,表明污染物在铅直方向的稀释范围越大,越有利于大气污染物的扩散。混合层高度随时间变化,在一天中,早晨混合层高度一般较低,不利于大气污染物在铅直方向的扩散,而午后混合层高度达到最大值,有利于大气污染物在铅直方向的扩散。
八、飞机湍流是什么意思?
大气湍流运动中伴随着能量、动量、物质的传递和交换,传递速度远远大于层流,因此湍流中的扩散、剪切应力和能量传递也大得多。
飞机湍流对飞行性能、结构载荷、飞行安全的影响很大。飞机在大气湍流中飞行时会产生颠簸,影响乘员的舒适程度,还会造成飞机的疲劳损伤。因湍流引发的飞行事故时有发生。
本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.